TECHNICAL DATA

MQ-3 GAS SENSOR

FEATURES

- * High sensitivity to alcohol and small sensitivity to Benzine .
- * Fast response and High sensitivity
- * Stable and long life
- * Simple drive circuit

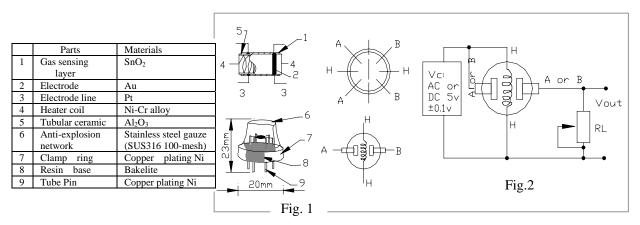
APPLICATION

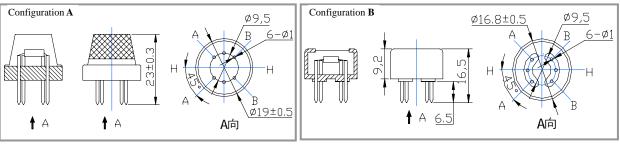
They are suitable for alcohol checker, Breathalyser.

SPECIFICATIONS

A. Standard work condition

11. Standard Work Condition				
Symbol	Parameter name	Technical condition	Remarks	
Vc	Circuit voltage	5V±0.1	AC OR DC	
$V_{\rm H}$	Heating voltage	5V±0.1	ACOR DC	
$R_{ m L}$	Load resistance	200Κ Ω		
R _H	Heater resistance	33 Ω ±5%	Room Tem	
P _H	Heating consumption	less than 750mw		


B. Environment condition


Symbol	Parameter name	Technical condition	Remarks
Tao	Using Tem	-10°C-50°C	
Tas	Storage Tem	-20℃-70℃	
R_{H}	Related humidity	less than 95%Rh	
O_2	Oxygen concentration	21%(standard condition)Oxygen	minimum value is
		concentration can affect sensitivity	over 2%

C. Sensitivity characteristic

Symbol	Parameter name	Technical parameter	Remarks
Rs	Sensing Resistance	1M Ω - 8 M Ω	Detecting concentration
		(0.4mg/L alcohol)	scope:
			0.05mg/L—10mg/L
α			Alcohol
(0.4/1 mg/L)	Concentration slope rate	≤0.6	
Standard	Temp: 20°C ±2°C	Vc:5V±0.1	1
detecting	Humidity: 65%±5%	Vh: 5V±0.1	
condition]
Preheat time	Over 24 hour		

D. Structure and configuration, basic measuring circuit

micro AL2O3 ceramic tube, Tin Dioxide (SnO2) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-3 have 6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

Electric parameter measurement circuit is shown as Fig.2

E. Sensitivity characteristic curve

Fig.2 sensitivity characteristics of the MQ-3

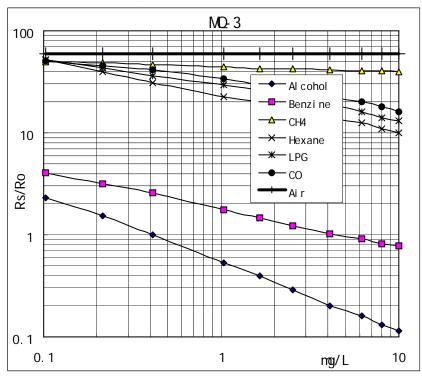


Fig.3 is shows the typical sensitivity characteristics of the MQ-3 for several gases. in their: Temp: 20°C, Humidity: 65%, O₂ concentration 21%

 $\label{eq:RL=200k} \begin{array}{l} \Omega \\ \text{Ro: sensor resistance at 0.4mg/L of} \\ \text{Alcohol in the clean air.} \end{array}$

Rs:sensor resistance at various concentrations of gases.

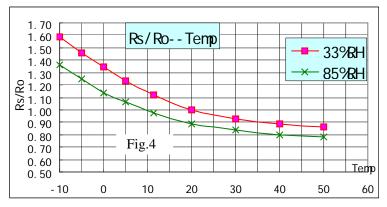


Fig.4 is shows the typical dependence of the MQ-3 on temperature and humidity.

Ro: sensor resistance at 0.4mg/L of Alcohol in air at 33%RH and 20 °C Rs: sensor resistance at 0.4mg/L of Alcohol at different temperatures and humidities.

SENSITVITY ADJUSTMENT

Resistance value of MQ-3 is difference to various kinds and various concentration gases. So,When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 0.4mg/L (approximately 200ppm) of Alcohol concentration in air and use value of Load resistancethat(R_L) about 200 K Ω (100K Ω to 470 K Ω).

When accurately measuring, the proper alarm point for the gas detector should be determined after considering the temperature and humidity influence.